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Hydraulic properties of the Hemopump HP31:
a study of the downstream pressure distribution

M. Grigioni*,A. Carotti ** , C. Daniele*, U. Morbiducci*, C. Del Gaudio*, G. D’Avenio*,

V. Barbaro*,  R. Di Donato**

*Laboratory of Biomedical Engineering, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
**  “Bambino Gesù” Pediatric Hospital, Roma, Italy

Abstract – The Hemopump was commercialized as an useful tool
for the left ventricle assistance. Bioengineers and clinicians
showed great interest to develop applications and to analyze its
hydraulic behaviour; in this work an application for axial pump
in different conditions is presented. A study of the spatial
pressure distribution generated by the impeller of the
Hemopump is investigated in highly accurate steady-flow
conditions.
The experimental set up adopted for this study consists in a
plexiglass test pipe (simulating an aortic conduit of 22-mm
diameter) and allows the sampling of the pressure at the outlet of
the pump in 16 points spaced ½ diameter each other. Keeping
fixed the constant head at the inlet of the Hemopump and
varying the constant head at its outlet, i. e. afterloads, in 11 step
levels, it was possible to draw the characteristic flow curves
versus delivered pressure for all the seven speed levels. A
pressure range of about 35÷130 mmHg and a flow range of about
–0.7÷3.7 l/min was experimented.
The results show that the flow delivered by the Hempopump is
fully developed after 5 pressure taps (about 55 mm), with no
further varying along the test chamber. These data could be used
to optimize the setting up of clinical experimental procedures.

Keywords – Hemopump, spatial pressure distribution

I. INTRODUCTION

In recent years, the need has grown for mechanical circulatory
support of the failing heart. Micro-axial blood pumps have
been revealed as an useful tool either for short term or for
chronic left ventricular assistance [1-7].
The Hemopump (Medtronic, Minneapolis, USA) is a device
based on the principle of the screw pump: it furnishes, by
conversion from electric energy, rotating energy to a high
speed rotor [8]. The elevated speed rotation accelerates blood
transferring it from the low pressure inlet to the high pressure
outlet. The Hemopump is a device for left ventricular
assistance having an axial pump, with an aspiration silicone
cannula, connected by a flexible drive cable to an
electromagnetic motor, this one being controlled by the
Hemopump drive unit [7, 8]. The drive unit provides seven
different speed rotation levels, trying to mantain at a costant
value the pump rotation speed for each available setting
controlling the motor current erogation in consequence of the
changing pressure and flow working conditions. This current-
controlled method does not allow to desume the pump flow
from the selected rotation speed, with the consequence that
the level of perfusion could be unpredictable, depending on
preload and afterload conditions.

Our group used this axial pump to realize an extracorporeal
circuit in the case of ewe’s fetal cardiosurgery trials [9].
This device, in its normal use, is pushed through the aorta in
the left ventricle and fixed in transvalvular position. Object of
the present study is an in vitro test of the hydraulic
performances of the HP31 in a cylindrical test chamber, to
investigate the pressure distribution at diffent distances from
the edge of the pump impeller. Fixing the constant head at the
inlet of the Hemopump and varying the constant head at its
outlet, it was possible to draw the characteristic flow curves
versus delivered pressure for all the available pump rotating
speed levels, to be used as a control grid in defining
experimental procedures (cannulation, circuit length, etc.)
such as in [9,10].

II. MATERIALS & M ETHODS

The experimental set up adopted for the investigation of the
pressure distribution distal to the axial pump outlet is shown
in Fig. 1. The hydraulic circuit is equipped with a plexiglas
test pipe (22 mm diameter) with 16 equispaced taps (1/2
diameter length) for the pressure measurements. The latter
were performed using water columns for each pressure tap
(see Fig. 1) at the resolution of 0.05 cmH2O. The Hemopump,
mounting the aspiration cannula, was inserted co-axially
within the test chamber, while two reservoirs were connected
by plastic tubes.

Fig 1. Experimental set up
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The hydrodynamic behaviour of the pump was investigated in
an in vitro model filled with a 33% solution of water and
glycerol, simulating blood viscosity.
The study was performed with respect to a feasible range of
pressures delivered at pump’s outlet [11, 12] using
gravimetric heads, ranging from 35 to 130 mmHg; the test
was performed investigating all the seven pump speed levels.
A centrifugal pump (Iwaki Co. Ltd) between reservoir 2
(output constant head) and 1 (input constant head) has been
used, to supply constant head tanks.
Thus the hydraulic behaviour of the axial pump was
investigated fixing the piezometric height of the reservoir 1
(input constant head), keeping at a constant piezometric
height the reservoir 2 (output constant head), for all the seven
pump speed levels; this configuration was repeated for eleven
different piezometric heights of the reservoir 2, in elevation
steps of 12.5 cm of water-glycerol solution (approximately 10
mmHg).
The above-described set-up allowed us to measure the
difference between the pressure at the outlet of the pump
(pressure value measured at the tap farthest from the pump’s
outlet) and the pressure proximal to the inlet of the aspiration
cannula (calculated assuming a poiseuillian fluid motion in
the adduction tube).
Pressure measurements have been done with a gravimetric
system of very high precision, so that the standard deviations
resulted of the same order of accuracy of the measurement
system itself.
Flow measurements were performed with an electromagnetic
flowmeter (Endress+Hauser), having 0.1% of accuracy in
detecting fluid velocity.

III. RESULTS

Figures. 2, 3, 4 show the pressure distributions along the test
chamber (16 pressure taps) for three different speed levels
(speed level 2, 4 and 7 respectively), for all the eleven
investigated heights of the output constant head.

Fig 2. Pressure distributions along the test section at speed level 2 (from
[=10 mmHg to � =110 mmHg, step=10 mmHg)

It can be noticed how, for all the speed levels, the measured
pressures showed an increasing trend as for the first 5, 6
pressure taps distal to the edge of the pump impeller. It is
possible to underline how a difference in the piezometric
height of the reservoir 2 (output constant head) sensibly
modify the pressure delivered by the axial pump. This could

be relevant when designing the length of an external circuit as
well as of the cannulation.
Figure 5 shows the flow rate versus delivered pressure curves
for all the eleven piezometric heights of the reservoir 2; it is
possible to observe how, at all pump speed levels, a reduction
of the afterload was associated to an increasing anterograde
pump flow.

Fig 3. Pressure distributions along the test section at speed level 4 (from
[=10 mmHg to �=110 mmHg, step=10 mmHg)

Figure 5 also shows how retrograde flow was obtained at
higher afterloads and lower speed levels (the three lower
ones).
In Figure 6 the relationship is shown between the flow rates
and the differences between the pressure at the outlet of the
test section (measured at the tap farthest from the pump’s
outlet) and the pressure proximal to the inlet of the aspiration
cannula.

Fig 4. Pressure distributions along the test section at speed level 7 (from
[=10 mmHg to � =110 mmHg, step=10 mmHg)

IV. DISCUSSION

In this paper we measured the pressure spatial distribution
distally to the edge of an HP31 impeller [6], in a cylindrical
tube simulating an arterial site. This allowed us to quantify,
under specific controlled conditions, the transitional length of
the fluid motion, i. e., at which distance far from the edge of
the axial pump impeller the flow can be considered fully
developed; at the same time, pressure measurements can be
considered stabilized.
We observed how, for all the investigated piezometric heights
of the reservoir connected to the line of return of the
experimental hydraulic circuit (output constant head), at a
distance of about 55 mm away, distally to the edge of the
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Hemopump impeller (i. e., the first five pressure taps,
equivalent to a distance of abour three vessel diameters of the
cylindrical test chamber), pressure reached an almost constant
value, no further varying along the test chamber.

Fig 5. Flow rate versus delivered pressure curves relative to the considered
eleven piezometric heights of the reservoir 2.

Fig 6. Flow rate versus pressure differences curves for all the eleven

piezometric heights of the reservoir 2.

We observed how the axial pump is sensible to the afterload
value: according to [11, 12], pump performance was
significantly improved by afterload reduction. This means
that in a beating heart, during the mechanical assistance, the
blood flow provided by the pump is modulated by the arterial
loading conditions, together with the ventricular contribution..
As a consequence, the current-controlled method governing
the HP does not allow to desume the pump flow from the
selected rotation speed, with the consequence that the level of
perfusion remains not exactly predictable.
The level of indetermination in the flow rate delivered by the
axial pump is an in vivo undesiderable feature, so that in vitro
hydraulic characterizations of the HP31 could furnish useful
estimations for clinical set up.
The pressure field at pump’s outlet, for each afterload level
and for each speed level, was investigated as a measure of the
Hemopump’s capability to convert kinetic energy into
pressure; we demonstrated that this capability depends on the
hydraulic characteristics of the circuit in which the pump is
investigated. The data suggest that in vitro behaviours can be
used to accurately set the experimental assistance and to
correctly evaluate the results as in [9, 10].
The results presented in this paper also showed how for high
afterload and low speed levels the fluid flow can even become

negative, indicating a retrograde flow through the axial pump.
We measured retrograde pump flow in correspondence of the
first three pump speed levels,.suggesting that care must be
paid to avoid this occurrence in vivo, in order to maintain the
efficiency of the mechanical assistance.
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